Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance.
نویسندگان
چکیده
Side-population (SP) cells within cancers and cell lines are rare cell populations known to enrich cancer stem-like cells. In this study, we characterized SP cells from the human breast cancer cell line MCF7 as a model for cancer stem-like cells. Compared with non-SP cells, MCF7 SP cells had higher colony-formation ability in vitro and greater tumorigenicity in vivo, suggesting that MCF7 SP cells enrich cancer stem-like cells. cDNA microarray analysis of the SP cells indicated higher expression of ATP-binding cassette transporters and genes involved in quiescence, which were confirmed by quantitative RT-PCR and flow cytometry cell cycle analysis. To identify signal pathways important for cancer stem-like cells, we analyzed cDNA microarray data and identified nine pathways that were altered in the SP cells. To analyze the protein signaling networks, we used reverse-phase signaling pathway protein microarray technology and identified three signaling proteins that are significantly different between MCF7 SP and non-SP cells. Notably, signaling of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR), signal transduction and activator of transcription (STAT3), and phosphatase and tensin homolog (PTEN) was confirmed to be critical for MCF7 SP cell survival and proliferation by pathway specific inhibitors, selected gene knockdown, and in vivo tumorigenicity assay. The STAT3 pathway was found to be positively regulated by mTOR signaling, whereas PTEN served as a negative regulator of both STAT3 and mTOR signaling. This study suggests the existence of prosurvival signaling pathways critical for cancer stem-like cell maintenance, which could be selectively targeted for inhibiting cancer stem-like cells for improved treatment.
منابع مشابه
Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملThe role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations.
Characterization of the molecular pathways that are required for the viability and maintenance of self-renewing tumor-initiating cells may ultimately lead to improved therapies for cancer. In this study, we show that a CD133(+)/CD44(+) population of cells enriched in prostate cancer progenitors (PCaPs) has tumor-initiating potential and that these progenitors can be expanded under nonadherent, ...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملSTAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 41 شماره
صفحات -
تاریخ انتشار 2007